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Abstract—Sidechains have long been heralded as the key
enabler of blockchain scalability and interoperability. However,
no modeling of the concept or a provably secure construction
has so far been attempted.

We provide the first formal definition of what a sidechain
system is and how assets can be moved between sidechains
securely. We put forth a security definition that augments the
known transaction ledger properties of liveness and safety to hold
across multiple ledgers and enhance them with a new “firewall”
security property which safeguards each blockchain from its
sidechains, limiting the impact of an otherwise catastrophic
sidechain failure.

We then provide a sidechain construction that is suitable
for proof-of-stake (PoS) sidechain systems. As an exemplary
concrete instantiation we present our construction for an epoch-
based PoS system consistent with Ouroboros (Crypto 2017), the
PoS blockchain protocol used in Cardano which is one of the
largest pure PoS systems by market capitalisation, and we also
comment how the construction can be adapted for other protocols
such as Ouroboros Praos (Eurocrypt 2018), Ouroboros Genesis
(CCS 2018), Snow White and Algorand. An important feature
of our construction is merged-staking that prevents “goldfinger”
attacks against a sidechain that is only carrying a small amount
of stake. An important technique for pegging chains that we use
in our construction is cross-chain certification which is facilitated
by a novel cryptographic primitive we introduce called ad-hoc
threshold multisignatures (ATMS) which may be of independent
interest. We show how ATMS can be securely instantiated by
regular and aggregate digital signatures as well as succinct
arguments of knowledge such as STARKs and bulletproofs with
varying degrees of storage efficiency.

Index Terms—blockchain, sidechains, distributed systems

I. INTRODUCTION

Blockchain protocols and their most prominent application

so far, cryptocurrencies like Bitcoin [25], have been gaining

increasing popularity and acceptance by a wider community.

While enjoying wide adoption, there are several fundamental

open questions remaining to be resolved that include (i)

Interoperability: How can different blockchains interoperate

and exchange assets or other data? (ii) Scalability: How can

blockchain protocols scale, especially proportionally to the

number of participating nodes? (iii) Upgradability: How can

a deployed blockchain protocol codebase evolve to support a

new functionality, or correct an implementation problem?

The main function of a blockchain protocol is to organise

application data into blocks so that a set of nodes that

evolves over time can arrive eventually to consensus about the

sequence of events that took place. The consensus component

can be achieved in a number of ways, the most popular is

using proof-of-work [14] (cf. [15], [25]), while a promising

alternative is to use proof-of-stake (cf. [4], [11], [18], [24]).

Application data typically consists of transactions indicating

some transfer of value as in the case of Bitcoin [25]. The

transfer of value can be conditioned on arbitrary predicates

called smart contracts such as, for example, in Ethereum [9],

[29].

The conditions used to validate transactions depend on

local blockchain events according to the view of each node

and they typically cannot be dependent on other blockchain

sessions. Being able to perform operations across blockchains,

for instance from a main blockchain such as Bitcoin to a

“sidechain” that has some enhanced functionality, has been

frequently considered a fundamental technology enabler in the

blockchain space.1

Sidechains, introduced in [1], are a way for multiple

blockchains to communicate with each other and have one

react to events in the other. Sidechains can exist in two forms.

In the first case, they are simply a mechanism for two existing

stand-alone blockchains to communicate, in which case any of

the two blockchains can be the sidechain of the other and they

are treated as equals. In the second case, the sidechain can be

a “child” of an existing blockchain, the mainchain, in that its

genesis block, the first block of the blockchain, is somehow

seeded from the parent blockchain and the child blockchain is

meant to depend on the parent blockchain, at least during an

initial bootstrapping stage.

A sidechain system can choose to enable certain types of

interactions between the participating blockchains. The most

basic interaction is the transfer of assets from one blockchain

to another. In this application, the nature of the asset trans-

ferred is retained in that it is not transformed into a different

class of asset (this is in contrast to a related but different

concept of atomic swaps). As such, it maintains its value and

may also be transferred back. The ability to move assets back

and forth between two chains is sometimes referred to as a 2-
way peg. Provided the two chains are both secure as individual

blockchains, a secure sidechain protocol construction allows

this security to be carried on to cross-chain transfers.

A secure sidechain system could be of a great value vis-

à-vis all three of the pressing open questions in blockchain

1See e.g., https://blockstream.com/technology/ and [1].



systems mentioned above. Specifically:

Interoperability. There are currently hundreds of cryptocur-

rencies deployed in production. Transferring assets between

different chains requires transacting with intermediaries (such

as exchanges). Furthermore, there is no way to securely

interface with another blockchain to react to events occurring

within it. Enabling sidechains allows blockchains of different

nature to communicate, including interfacing with the legacy

banking system which can be made available through the use

of a private ledger.

Scalability. While sidechains were not originally proposed

for scalability purposes, they can be used to off-load the load

of a blockchain in terms of transactions processed. As long

as 2-way pegs are enabled, a particular sidechain can offer

specialization by, e.g., industry, in order to avoid requiring

the mainchain to handle all the transactions occurring within

a particular economic sector. This provides a straightforward

way to “shard” blockchains, cf. [19], [23], [31].

Upgradability. A child sidechain can be created from a

parent mainchain as a means of exploring a new feature, e.g.,

in the scripting language, or the consensus mechanism without

requiring a soft, hard, or velvet fork [17], [32]. The sidechain

does not need to maintain its own separate currency, as value

can be moved between the sidechain and the mainchain at

will. If the feature of the sidechain proves to be popular, the

mainchain can eventually be abandoned by moving all assets

to the sidechain, which can become the new mainchain.

Given the benefits listed above for distributed ledgers, there

is a pressing need to address the question of sidechain security

and feasibility, which so far, perhaps surprisingly, has not

received any proper formal treatment.

Our contributions. First, we formalize the notion of

sidechains by proposing a rigorous cryptographic definition,

the first one to the best of our knowledge. The definition

is abstract enough to be able to capture the security for

blockchains based on proof-of-work, proof-of-stake, and other

consensus mechanisms.

A critical security feature of a sidechain system that we

formalise is the firewall property in which a catastrophic

failure in one of the chains, such as a violation of its se-

curity assumptions, does not make the other chains vulnerable

providing a sense of limited liability.2 The firewall property

formalises and generalises the concept of a blockchain firewall
which was described in high level in [1]. Informally the

blockchain firewall suggests that no more money can ever

2To follow the analogy with the term of limited liability in corporate law,
a catastrophic sidechain failure is akin to a corporation going bankrupt and
unable to pay its debtors. In a similar fashion, a sidechain in which the security
assumptions are violated may not be able to cover all of its debtors. We give no
assurances regarding assets residing on a sidechain if its security assumptions
are broken. However, in the same way that stakeholders of a corporation are
personally protected in case of corporate bankruptcy, the mainchain is also
protected in case of sidechain security failures. Our security will guarantee
that each incoming transaction from a sidechain will always have a valid
explanation in the sidechain ledger independently of whether the underlying
security assumptions are violated or not. A simple embodiment of this rule
is that a sidechain can return to the mainchain at most as many coins as they
have been sent to the sidechain over all time.

return from the sidechain than the amount that was moved

into it. Our general firewall property allows relying on an

arbitrary definition of exactly how assets can correctly be

moved back and forth between the two chains, we capture this

by a so-called validity language. In case of failure, the firewall

ensures that transfers from the sidechain into the mainchain are

rejected unless there exists a (not necessarily unique) plausible

history of events on the sidechain that could, in case the

sidechain was still secure, cause the particular transfers to take

place.

Second, we outline a concrete exemplary construction for

sidechains for proof-of-stake blockchains. For conciseness

our construction is described with respect to a generic PoS

blockchain consistent with the Ouroboros protocol [18] that

underlies the Cardano blockchain, which is currently one of

the largest pure PoS blockchains by market capitalisation,3

nevertheless we also discuss how to modify our construction

to operate for Ouroboros Praos [11], Ouroboros Genesis [2],

Snow White [5] and Algorand [24].

We prove our construction secure using standard cryp-

tographic assumptions. We show that our construction (i)

supports safe cross-chain value transfers when the security as-

sumptions of both chains are satisfied, namely that a majority

of honest stake exists in both chains, and (ii) in case of a one-

sided failure, maintains the firewall property, thus containing

the damage to the chains whose security conditions have been

violated.

A critical consideration in a sidechain construction is

safeguarding a new sidechain in its initial “bootstrapping”

stage against a “goldfinger” type of attack [20]. Our con-

struction features a mechanism we call merged-staking that

allows mainchain stakeholders who have signalled sidechain

awareness to create sidechain blocks even without moving

stake to the sidechain. In this way, sidechain security can be

maintained assuming honest stake majority among the entities

that have signaled sidechain awareness that, especially in the

bootstrapping stage, are expected to be a large superset of the

set of stakeholders that maintain assets in the sidechain.

Our techniques can be used to facilitate various forms of 2-

way peggings between two chains. As an illustrative example

we focus on a parrent-child mainchain-sidechain configuration

where sidechain nodes follow also the mainchain (what we

call direct observation) while mainchain nodes need to be

able to receive cryptographically certified signals from the

sidechain maintainers, taking advantage of the proof-of-stake

nature of the underlying protocol. This is achieved by having

mainchain nodes maintain sufficient information about the

sidechain that allows them to authenticate a small subset of

sidechain stakeholders that is sufficient to reliably represent the

view of a stakeholder majority on the sidechain. This piece of

information is updated in regular intervals to account for stake

shifting on the sidechain. Exploiting this, each withdrawal

transaction from the sidechain to the mainchain is signed

by this small subset of sidechain stakeholders. To minimise

3See https://coinmarketcap.com.



overheads we batch this authentication information and all the

withdrawal transactions from the sidechain in a single message

that will be prepared once per “epoch.” We will refer to this

signaling as cross-chain certification.

In greater detail, adopting some terminology from [18],

the sidechain certificate is constructed by obtaining signatures

from the set of so-called slot leaders of the last Θ(k) slots

of the previous epoch, where k is the security parameter.

Subsequently, these signatures will be combined together with

all necessary information to convince the mainchain nodes

(that do not have access to the sidechain) that the sidechain

certificate is valid. We abstract the notion of this trust transition

into a new cryptographic primitive called ad-hoc threshold
multisignatures (ATMS) that we implement in three distinct

ways. The first one simply concatenates signatures of elected

slot leaders. While secure, the disadvantage of this imple-

mentation is that the size of the sidechain certificate is Θ(k)
signatures. An improvement can be achieved by employing

multisignatures and Merkle-tree hashing for verification key

aggregation; using this we can drop the sidechain-certificate

size to Θ(r) signatures where r slot leaders do not participate

in its generation; in the optimistic case r � k and thus this

scheme can be a significant improvement in practice. Finally,

we show that STARKs and bulletproofs [3], [8] can be used to

bring down the size of the certificate to be optimally succinct

in the random oracle model. We observe that in the case of

an active sidechain (e.g., one that returns assets at least once

per epoch) our construction with succinct sidechain certificates

has optimal storage requirements in the mainchain.

Related work. Sidechains were first proposed as a high

level concept in [1]. Notable proposed implementations of the

concept are given in [21], [27]. In these works, no formal proof

of security is provided and their performance is sometimes

akin to maintaining the whole blockchain within the sidechain,

limiting any potential scalability gains. There have been sev-

eral attempts to create various cross-chain transfer mechanisms

including Polkadot [30], Cosmos [7], Blockstream’s Liquid

[12] and Interledger [28]. These constructions differ in various

aspects from our work including in that they focus on proof-of-

work or private (Byzantine) blockchains, require federations,

are not decentralized and — in all cases — lack a formal

security model and analysis. Threshold multi-signatures were

considered before, e.g., [22], without the ad-hoc characteristic

we consider here. A related primitive that has been consid-

ered as potentially useful for enabling proof-of-work (PoW)

sidechains (rather than PoS ones) is a (non-interactive) proof

of proof-of-work [16], [17]; nevertheless, these works do not

give a formal security definition for sidechains, nor provide

a complete sidechain construction. We reiterate that while we

focus on PoS, our definitions and model are fully relevant for

the PoW setting as well.

II. PRELIMINARIES

A. Our Model

We employ the model from [11], which is in turn based

on [18] and [15]. The formalization we use below captures

both synchronous and semi-synchronous communication; as

well as both semi-adaptive and fully adaptive corruptions.
1) Protocol Execution: We divide time into discrete units

called slots. Players are equipped with (roughly) synchronized

clocks that indicate the current slot: we assume that any clock

drift is subsumed in the slot length. Each slot slr is indexed

by an integer r ∈ {1, 2, . . .}. We consider a UC-style [10]

execution of a protocol Π, involving an environment Z , a

number of parties Pi, functionalities that these parties can

access while running the protocol (such as the DDiffuse used

for communication, described below), and an adversary A.

All these entities are interactive algorithms. The environment

controls the execution by activating parties via inputs it

provides to them. The parties, unless corrupted, respond to

such activations by following the protocol Π and invoking the

available functionalities as needed.
2) (Semi-)Adaptive Corruptions: The adversary influences

the protocol execution by interacting with the available func-

tionalities, and by corrupting parties. The adversary can only

corrupt a party Pi if it is given permission by the environment

Z running the protocol execution (captured as a special

message from Z to A). Upon receiving permission from the

environment, the adversary corrupts Pi after a certain delay of

Λ slots, where Λ is a parameter of our model. In particular,

if Λ = 0 we talk about fully adaptive corruptions and the

corruption is immediate. The model with Λ > 0 is referred to

as allowing Λ-semi-adaptive corruptions (as opposed to the

static corruptions model, where parties can only be corrupted

before the start of the execution). A corrupted party Pi

will relinquish its entire state to A; from this point on, the

adversary will be activated in place of the party Pi.
3) (Semi-)Synchronous Communication: We employ the

“Delayed Diffuse” functionality DDiffuseΔ given in [11] to

model (semi-)synchronous communication among the parties.

It allows each party to diffuse a message once per round, with

the guarantee that it will be delivered to all other parties in at

most Δ slots (the delay within this interval is under adversarial

control). The adversary can also read and reorder all messages

that are in transit, as well as inject new messages. We

provide a detailed description of the functionality DDiffuseΔ
in Appendix A for completeness.

We refer to the setting where honest parties communicate

via DDiffuseΔ as the Δ-semi-synchronous setting and some-

times omit Δ if it is clear from the context. The special case

of Δ = 0 is referred to as the synchronous setting.
Clearly, the above model is by itself too strong to allow us

to prove any meaningful security guarantees for the executed

protocol without further restrictions (as it, for example, does

not prevent the adversary from corrupting all the participating

parties). Therefore, in what follows, we will consider such ad-

ditional assumptions, and will only provide security guarantees

as long as such assumptions are satisfied. These assumptions

will be specific to the protocol in consideration, and will be

an explicit part of our statements.4

4As an example, we will be assuming that a majority of a certain pool of
stake is controlled by uncorrupted parties.



B. Blockchains and Ledgers

A blockchain (or a chain) (denoted e.g. C) is a sequence

of blocks where each one is connected to the previous one by

containing its hash.

Blockchains (and in general, any sequences) are indexed

using bracket notation. C[i] indicates the ith block, starting

from C[0], the genesis block. C[−i] indicates the ith block from

the end, with C[−1] being the tip of the blockchain. C[i : j]
indicates a subsequence, or subchain of the blockchain starting

from block i (inclusive) and ending at block j (exclusive). Any

of these two indices can be negative. Omitting one of the two

indexes in the range addressing takes the subsequence to the

beginning or the end of the blockchain, respectively. Given

blocks A and Z in C, we let C{A : Z} denotes the subchain

obtained by only keeping the blocks from A (inclusive) to Z
(exclusive). Again any of these two blocks can be omitted to

indicate a subchain from the beginning or to the end of the

blockchain, respectively. In blockchain protocols, each honest

party P maintains a currently adopted chain. We denote CP [t]
the chain adopted by party P at slot t.

A ledger (denoted in bold-face, e.g. L) is a mechanism for

maintaining a sequence of transactions, often stored in the

form of a blockchain. In this paper, we slightly abuse the

language by letting L (without further qualifiers) interchange-

ably refer to the algorithms used to maintain the sequence,

and all the views of the participants of the state of these

algorithms when being executed. For example, the (existing)

ledger Bitcoin consists of the set of all transactions that ever

took place in the Bitcoin network, the current UTXO set, as

well as the local views of all the participants.

In contrast, we call a ledger state a concrete sequence of

transactions tx1, tx2, . . . stored in the stable part of a ledger

L, typically as viewed by a particular party. Hence, in every

blockchain-based ledger L, every fixed chain C defines a

concrete ledger state by applying the interpretation rules given

as a part of the description of L (for example, the ledger state

is obtained from the blockchain by dropping the last k blocks

and serializing the transactions in the remaining blocks). We

maintain the typographic convention that a ledger state (e.g.

L) always belongs to the bold-face ledger of the same name

(e.g. L). We denote by LP [t] the ledger state of a ledger L
as viewed by a party P at the beginning of a time slot t, and

by ĽP [t] the complete state of the ledger (at time t) including

all pending transactions that are not stable yet. For two ledger

states (or, more generally, any sequences), we denote by �
the prefix relation.

Recall the definitions of persistence and liveness of a robust

public transaction ledger given in the most recent version

of [15]:

Persistence. For any two honest parties P1, P2 and two time

slots t1 ≤ t2, it holds LP1 [t1] � ĽP2 [t2].
Liveness. If all honest parties in the system attempt to include

a transaction then, at any slot t after u slots (called the

liveness parameter), any honest party P , if queried, will

report tx ∈ LP [t].

For a ledger L that satisfies persistence at time t, we denote

by L∪[t] (resp. L∩[t]) the sequence of transactions that are

seen as included in the ledger by at least one (resp., all) of

the honest parties. Finally, length(L) denotes the length of the

ledger L, i.e., the number of transactions it contains.

C. Underlying Proof-of-Stake Protocols

For conciseness we present our construction on a generic

PoS protoocol based on Ouroboros PoS [18]. As we outline

in Appendix C, our construction can be easily adapted to

other provably secure proof-of-stake protocols: Ouroboros

Praos [11], Ouroboros Genesis [2], Snow White [5], and

Algorand [24]. While a full understanding of all details of

these protocols is not required to follow our work (and cannot

be provided in this limited space), an overview of Ouroboros

is helpful to follow the main body of the paper. We provide

this high-level overview here, and point an interested reader

to Appendix C (or the original papers) for details on the other

protocols.

1) Ouroboros: The protocol operates (and was analyzed)

in the synchronous model with semi-adaptive corruptions. In

each slot, each of the parties can determine whether she

qualifies as a so-called slot leader for this slot. The event

of a particular party becoming a slot leader occurs with a

probability proportional to the stake controlled by that party

and is independent for two different slots. It is determined by

a public, deterministic computation from the stake distribution

and so-called epoch randomness (we will discuss shortly

where this randomness comes from) in such a way that for

each slot, exactly one leader is elected.

If a party is elected to act as a slot leader for the current

slot, she is allowed to create, sign, and broadcast a block

(containing transactions that move stake among stakeholders).

Parties participating in the protocol are collecting such valid

blocks and always update their current state to reflect the

longest chain they have seen so far that did not fork from

their previous state by too many blocks into the past.

Multiple slots are collected into epochs, each of which

contains R ∈ N slots. The security arguments in [18] require

R ≥ 10k for a security parameter k; we will consider R = 12k
as additional 2k slots in each epoch will be useful for our

construction. Each epoch is indexed by an index j ∈ N. During

an epoch j, the stake distribution that is used for slot leader

election corresponds to the distribution recorded in the ledger

up to a particular slot of epoch j − 1, chosen in a way that

guarantees that by the end of epoch j − 1, there is consensus

on the chain up to this slot. (More concretely, this is the latest

slot of epoch j − 1 that appears in the first 4k out of its total

R slots.) Additionally, the epoch randomness ηj for epoch j
is derived during the epoch j − 1 via a guaranteed-output
delivery coin tossing protocol that is executed by the epoch

slot leaders, and is available after 10k slots of epoch j − 1
have passed.

In our treatment, we will refer to the relevant parts of the

above-described protocol as follows:



GetDistr(j) returns the stake distribution SDj to be used for

epoch j, as recorded in the chain up to slot 4k of epoch

j − 1;

GetRandomness(j) returns the randomness ηj for epoch j as

derived during epoch j − 1;

ValidateConsensusLevel(C) checks the consensus-level valid-

ity of a given chain C: it verifies that all block hashes are

correct, signatures are valid and belong to eligible slot

leaders;

PickWinningChain(C, C) applies the chain-selection rule:

from a set of chains {C} ∪ C it chooses the longest one

that does not fork from the current chain C more than k
blocks in the past;

SlotLeader(U, j, sl, SDj , ηj) determines whether a party U
is elected a slot leader for the slot sl of epoch j, given

stake distribution SDj and randomness ηj .

Moreover, the function EpochIndex (resp. SlotIndex) always

returns the index of the current epoch (resp. slot), and the

event NewEpoch (resp. NewSlot) denotes the start of a new

epoch (resp. slot). Since we use these functions in a black-

box manner, our construction can be readily adapted to PoS

protocols with a similar structure that differ in the details of

these procedures.

Ouroboros was shown in [18] to achieve both persistence

and liveness under the following assumptions: (1) synchronous

communication; (2) 2R-semi-adaptive corruptions; (3) major-

ity of stake in the stake distribution for each epoch is always

controlled by honest parties during that epoch.

III. DEFINING SECURITY OF PEGGED LEDGERS

In this section we give the first formal definition of security

desiderata for a system of pegged ledgers (popularly often

called sidechains). We start by conveying its intuition and then

proceed to the formal treatment.

We consider a setting where a set of parties run a protocol

maintaining n ledgers L1,L2, . . . ,Ln, each of the ledgers po-

tentially carrying many different assets. (This protocol might

of course be a combination of subprotocols for each of the

ledgers.) For each i ∈ [n], we denote by Ai the security

assumption required by Li: For example, Ai may denote that

there has never been a majority of hashing power (or stake

in a particular asset, on this ledger or elsewhere) under the

control of the adversary; that a particular entity (in case of a

centralized ledger) was not corrupted; and so on. We assume

that all Ai are monotone in the sense that once violated,

they cannot become true again. Formally, Ai is a monotone

predicate (which can only go from true to false) evaluated on

the whole execution of the respective ledger protocol.

There is an a priori unlimited number of (types of) assets,

each asset representing e.g. a different cryptocurrency. For

simplicity we assume that assets of the same type are fungible,

but our treatment easily covers also non-fungible assets. We

will allow specific rules of behavior for each asset (called

validity languages), and each asset behaves according to these

rules on each of the ledgers where it is present.

We will fix an operator merge(·) that merges a set of

ledger states L = {L1, L2, . . . , Ln} into a single ledger state

denoted by merge(L). We will discuss concrete instantiations

of merge(·) later, for now simply assume that some canonical

way of merging all ledger states into one is given.

Informally, at any point during the execution, our security

definition only provides guarantees to the subset S of ledgers

that have their security assumptions Ai satisfied (and hence

are all considered uncorrupted). We require that:

- each ledger in S individually maintains both persistence

and liveness;

- for each asset A, when looking at the sequence of

all A-transactions σ that occurred on the ledgers in S
(sequentialized via the merge operator), there must exist

a hypothetical sequence of A-transactions τ that could

have happened on the compromised ledgers, such that

the merge of σ and τ would be valid according to the

validity language of A.

We now proceed to formalize the above intuition.

Definition 1 (Assets, syntactically valid transactions). For an
asset A, we denote by TA the valid transaction set of A, i.e.,
the set of all syntactically valid transactions involving A. For
a ledger L we denote by TL the set of transactions that can be
included into L. For notational convenience, we define TA,L �
TA ∩ TL. Let Assets(L) denote the set of all assets that are
supported by L. Formally, Assets(L) � {A : TA,L 	= ∅}.

We assume that each transaction pertains to a particular

asset and belongs to a particular ledger, i.e., for distinct

A1 	= A2 and L1 	= L2, we have that TA1
∩ TA2

= ∅
and TL1 ∩ TL2 = ∅. However, our treatment can be easily

generalized to alleviate this restriction.

We now generically characterize the validity of a sequence

of transactions involving a particular asset. This is captured

individually for each asset via a notion of an asset’s validity
language, which is simply a set of words over the alphabet

of this asset’s transactions. The asset’s validity language is

meant to capture how the asset is mandated to behave in the

system. Let ε denote the empty sequence and ‖ represent

concatenation.

Definition 2 (Asset validity language). For an asset A, the
asset validity language of A is any language VA ⊆ T ∗

A that
satisfies the following properties:

1) Base. ε ∈ VA.
2) Monotonicity. For any w,w′ ∈ T ∗

A we have w 	∈ VA ⇒
w ‖w′ 	∈ VA.

3) Uniqueness of transactions. Words from VA never con-
tain the same transaction twice: for any tx ∈ TA and any
w1, w2, w3 ∈ T ∗

A we have w1 ‖ tx ‖w2 ‖ tx ‖w3 	∈ VA.

The first condition in the definition above is trivial, the

second one mandates the natural property that if a sequence

of transactions is invalid, it cannot become valid again by

adding further transactions. Finally, the third condition reflects

a natural “uniqueness” property of transactions in existing



implementations. While not necessary for our treatment, it

allows for some simplifications.

The following definition allows us to focus on a particular

asset or ledger within a sequence of transactions.

Definition 3 (Ledger state projection). Given a ledger state L,
we call a projection of L with respect to a set X (and denote
by πX (L)) the ledger state that is obtained from L by removing
all transactions not in X . To simplify notation, we will use πA

and πI as a shorthand for πTA
and π⋃

i∈I TLi
, denoting the

projection of the transactions of a ledger state with respect
to particular asset A or a particular set of individual ledger
indices. Naturally, for a language V we define the projected

language πX (V) := {πX (w) : w ∈ V}, which contains all the
sequences of transactions from the original language, each of
them projected with respect to X .

The concept of effect transactions below captures ledger

interoperability at the syntactic level.

Definition 4 (Effect Transactions). For two ledgers L
and L′, the effect mapping is a mapping of the form
effectL→L′ : TL → (TL′ ∪ {⊥}). A transaction tx′ =
effectL→L′(tx) 	= ⊥ is called the effect transaction of the
transaction tx.

Intuitively, for any transaction tx ∈ TL, the corresponding

transaction effectL→L′(tx) ∈ TL′ ∪ {⊥} identifies the nec-

essary effect on ledger L′ of the event of the inclusion of

the transaction tx into the ledger L. With foresight, in an

implementation of a system of ledgers where a “pegging”

exists, the transaction effectL→L′(tx) has to be eventually

valid and includable in L′ in response to the inclusion of tx
in L. Additionally, throughout the paper we assume that an

effect transaction is always clearly identifiable as such, and its

corresponding “sending” transaction can be derived from it;

our instantiation does have this property.

We use a special symbol ⊥ to indicate that the transaction

tx does not necessitate any action on L′ (this will be the case

for most transactions). We will now be interested mostly in

transactions that do require an action on the other ledger.

Definition 5 (Cross-Ledger Transfers). For two ledgers L and
L′ and an effect mapping effectL→L′(·), we refer to a transac-
tion in TL that requires some effect on L′ as a (L,L′)-cross-

ledger transfer transaction (or cross-ledger transfer for short).
The set of all cross-ledger transfers is denoted by T cl

L,L′ ⊆ TL,
formally T cl

L,L′ � {tx ∈ TL : effectL→L′(tx) 	= ⊥}.

Given ledger states L1, L2, . . . , Ln, we need to consider a

joint ordered view of the transactions in all these ledgers. This

is provided by the merge operator. Intuitively, merge allows

us to create a combined view of multiple ledgers, putting

all of the transactions across multiple ledgers into a linear

ordering. We expect that even if certain ledgers are missing

from its input, merge is still able to produce a global ordering

for the remaining ledgers. With foresight, this ability of the

merge operator will enable us to reason about the situation

when some ledgers fail: In that case, the respective inputs

to the merge function will be missing. The merge function

definition below depends on the effect mappings, we keep this

dependence implicit for simpler notation.

Definition 6 (Merging ledger states). The merge(·) func-
tion is any mapping taking a subset of ledger states L ⊆
{L1, L2, . . . , Ln} and producing a ledger state merge(L) such
that:

1) Partitioning. The ledger states in L are disjoint sub-
sequences of merge(L) that cover the whole sequence
merge(L).

2) Topological soundness. For any i 	= j such that Li, Lj ∈
L and any two transactions tx ∈ Li and tx′ ∈ Lj , if
tx′ = effectLi→Lj

(tx) then tx precedes tx′ in merge(L).
We will require that our validity languages are correct in

the following sense.

Definition 7 (Correctness of VA). A validity language VA is
correct with respect to a mapping merge (·), if for any ledger
states L � (L1, . . . , Ln) such that πA (merge (L)) ∈ VA,
indices i 	= j, and any cross-ledger transfer tx ∈ Li ∩ T cl

Li,Lj

such that effectLi→Lj
(tx) = tx′ 	= ⊥ is not in Lj , we have

πA (merge (L1, . . . , Li, . . . , Lj ‖ tx′, . . . , Ln)) ∈ VA .

The above definition makes sure that if a cross-ledger

transfer of an asset A is included into some ledger Li and

mandates an effect transaction on Lj , then the inclusion of

this effect transaction will be consistent with VA. Note that this

does not yet guarantee that the effect transaction will indeed

be included into Lj , this will be provided by the liveness of

Lj required below.

We are now ready to give our main security definition.

In what follows, we call a system-of-ledgers protocol any

protocol run by a (possibly dynamically changing) set of

parties that maintains an evolving state of n ledgers {Li}i∈[n].

Definition 8 (Pegging security). A system-of-ledgers proto-
col Π for {Li}i∈[n] is pegging-secure with liveness parameter
u ∈ N with respect to:

- a set of assumptions Ai for ledgers {Li}i∈[n],
- a merge mapping merge (·),
- validity languages VA for each A ∈ ⋃

i∈[n] Assets(Li),

if for all PPT adversaries, all slots t and for St �
{i : Ai is satisfied in slot t} we have that except with neg-
ligible probability in the security parameter:

Ledger persistence: For each i ∈ St, Li satisfies the
persistence property.

Ledger liveness: For each i ∈ St, Li satisfies the liveness
property parametrized by u.

Firewall: For all A ∈ ⋃
i∈St

Assets(Li),

πA (merge ({L∪
i [t] : i ∈ St})) ∈ πSt

(VA) .

Intuitively, the firewall property above gives the following

guarantee: If the security assumption of a particular sidechain

has been violated, we demand that the sequence of transactions

σ that appears in the still uncompromised ledgers is a valid



projection of some word from the asset validity language

onto these ledgers. This means that there exists a sequence of

transactions τ that could have happened on the compromised

ledgers, such that it would “justify” the current state of

the uncompromised ledgers as a valid state. Of course, we

don’t know whether this sequence τ actually occurred on the

compromised ledger, however, given that this ledger itself no

longer provides any reliable state, this is the best guarantee

we can still offer to the uncompromised ledgers.

Looking ahead, when we define a particular validity lan-

guage for our concrete, fungible, constant-supply asset, we will

see that this property will translate into the mainchain main-

taining “limited liability” towards the sidechain: the amount of

money transferred back from the sidechain can never exceed

the amount of money that was previously moved towards the

sidechain, because no plausible history of sidechain transac-

tions can exist that would justify such a transfer.

IV. IMPLEMENTING PEGGED LEDGERS

We present a construction for pegged ledgers that is based

on Ouroboros PoS [18], but also applicable to other PoS

systems such as Snow White [5] and Algorand [24] (for a

discussion of such adaptations, see Appendix C). Our protocol

will implement a system of ledgers with pegging security

according to Definition 8 under an assumption on the relative

stake power of the adversary that will be detailed below.

The main challenge in implementing pegged ledgers is

to facilitate secure cross-chain transfers. We consider two

approaches to such transfers and refer to them as direct
observation or cross-chain certification. Consider two pegged

ledgers L1 and L2. Direct observation of L1 means that every

node of L2 follows and validates L1; it is easy to see that this

enables transfers from L1 to L2. On the other hand, cross-

chain certification of L2 means that L1 contains appropriate

cryptographic information sufficient to validate data issued by

the nodes following L2. This allows transfers of assets from

L2, as long as they are certified, to be accepted by L1-nodes

without following L2. The choice between direct observation

and cross-chain certification can be made independently for

each direction of transfers between L1 and L2, any of the 4

variants is possible (cf. Figure 1).

Another aspect of implementing pegged ledgers in the PoS

context is the choice of stake distribution that underlies the

PoS on each of the chains. We again consider two options,

which we call independent staking and merged staking. In

independent staking, blocks on say L1 are “produced by” coins

from L1 (in other words, the block-creating rights on L1 are

attributed based on the stake distribution recorded on L1 only).

In contrast, with merged staking, blocks on L1 are produced

either by coins on L1, or coins on L2 that have, via their

staking key, declared support of L1 (but otherwise remain on

L1); see Figure 1. Also here, all 4 combinations are possible.

In our construction we choose an exemplary configuration

between two ledgers L1 and L2, so that direct observation is

applied to L1, cross-chain certification to L2, independent-

staking in L1 and merged staking in L2. As a result, all

stakeholders in L2 also keep track of chain development on

L1 (and hence run a full node for L1) while the opposite is not

necessary, i.e., L1 stakeholders can be oblivious of transactions

and blocks being added to L2. This illustrates the two basic

possibilities of pegging and can be easily adapted to any other

of the configurations between two ledgers in Figure 1.
In order to reflect the asymmetry between the two chains

in our exemplary construction we will refer to L1 as the

“mainchain” MC, and to L2 as the “sidechain” SC. To

elaborate further on this concrete asymmetric use case, we

also fully specify how the sidechain can be initialized from

scratch, assuming that the mainchain already exists.
The pegging with the sidechain will be provided with

respect to a specific asset of MC that will be created on

MC. Note that MC as well as SC may carry additional assets

but for simplicity we will assume that staking and pegging is

accomplished only via this single primary asset.
The presentation of the construction is organized as follows.

First, in Section IV-A we introduce a novel cryptographic

primitive, ad-hoc threshold multisignature (ATMS), which is

the fundamental building block for cross-chain certification.

Afterwards, in Section IV-C we use it as a black box to build

secure pegged ledgers with respect to concrete instantiations

of the functions merge and effect and a validity language VA

for asset A given in Section IV-B. Finally, we discuss specific

instantiations of ATMS in Section V.

A. Ad-Hoc Threshold Multisignatures
We introduce a new primitive, ad-hoc threshold multisigna-

tures (ATMS), which borrow properties from multisignatures

and threshold signatures and are ad-hoc in the sense that

signers need to be selected on the fly from an existing key

set. In Section IV-C we describe how ATMS are useful for

periodically updating the “anchor of trust” that the mainchain

parties have w.r.t. the sidechain they are not following.
ATMS are parametrized by a threshold t. On top of the

usual digital signatures functionality, ATMS also provide a

way to: (1) aggregate the public keys of a subset of these

parties into a single aggregate public key avk; (2) check that a

given avk was created using the right sequence of individual

public keys; and (3) aggregate t′ ≥ t individual signatures

from t′ of the parties into a single aggregate signature that

can then be verified using avk, which is impossible if less

than t individual signatures are used.
The definition of an ATMS is given below.

Definition 9. A t-ATMS is a tuple of algorithms Π =
(PGen,Gen,Sig,Ver,AKey,ACheck,ASig,AVer) where:
PGen(1κ) is the parameter generation algorithm that takes

the security parameter 1κ and returns system parame-
ters P .

Gen(P) is the key-generation algorithm that takes P and
produces a public/private key pair (vki, ski) for the party
invoking it.

Sig(ski,m) is the signature algorithm as in an ordinary
signature scheme: it takes a private key and a message
and produces a (so-called local) signature σ.



Fig. 1: Deployment options for PoS Sidechains.

Ver(m, pki, σ) is the verification algorithm that takes a
public key, a message and a signature and returns true

or false.
AKey(VK) is the key aggregation algorithm that takes a

sequence of public keys VK and aggregates them into
an aggregate public key avk.

ACheck(VK, avk) is the aggregation-checking algorithm
that takes a public key sequence VK and an aggregate
public key avk and returns true or false, determining
whether VK were used to produce avk.

ASig (m,VK, 〈(vk1, σ1), · · · , (vkd, σd)〉) is the signature-
aggregation algorithm that takes a message m, a se-
quence of public keys VK and a sequence of d pairs
〈(vk1, σ1), · · · , (vkd, σd)〉 where each σi is a local sig-
nature on m verifiable by vki and each vki is in a
distinct position within VK, ASig combines these into
a multisignature σ that can later be verified with respect
to the aggregate public key avk produced from VK (as
long as d ≥ t, see below).

AVer(m, avk, σ) is the aggregate-signature verification al-
gorithm that takes a message m, an aggregate public key
avk, and a multisignature σ, and returns true or false.

Definition 10 (ATMS correctness). Let Π be a t-
ATMS scheme initialized with P ← PGen(1κ), let
(vk1, sk1), · · · , (vkn, skn) be a sequence of keys generated
via Gen(P), let VK be a sequence containing (not nec-
essarily unique) keys from the above and avk be gen-
erated by invoking avk ← AKey(VK). Let m be any
message and let 〈(vk1, σ1), · · · , (vkd, σd)〉 be any sequence
of key/signature pairs provided that d ≥ t and every
vki appears in a unique position in the sequence VK,
where σi is generated as σi = Sig(ski,m). Let σ ←
ASig (m,VK, 〈(vk1, σ1), · · · , (vkd, σd)〉). The scheme Π is
correct if for every such message and sequence the following
hold:

1) Ver(m, vki, σi) is true for all i;
2) ACheck(VK, avk) is true;
3) AVer(m, avk, σ) is true.

We define the security of an ATMS in the definition below,

via a cryptographic game given in Algorithm 1.

Definition 11 (Security). A t-ATMS scheme Π =
(PGen,Gen,Sig,Ver,AKey,ACheck,ASig,AVer) is secure

if for any PPT adversary A and any polynomial p
there exists some negligible function negl such that
Pr[ATMSΠ,A(κ, p(κ)) = 1] < negl(κ) .

Algorithm 1 The ATMS game

1: function ATMS(κ, p)

2: VK ← ε;SK ← ε;Qsig ← ∅;Qcor ← ∅
3: P ← PGen(1κ)
4: (m,σ, avk, keys) ← AOgen,Osig(·,·),Ocor(·) (P)
5: q ← 0
6: for vk in keys do
7: if vk /∈ VK ∨ vk ∈ Qsig[m] ∪Qcor then
8: q ← q + 1
9: end if

10: end for
11: return AVer(m, avk, σ)∧ACheck(keys, avk)∧q < t
12: end function
13: function Ogen

14: (vk, sk) ← Gen(P)
15: VK ← VK‖ vk
16: SK ← SK‖ sk
17: return vk
18: end function
19: function Osig(i,m)

20: Qsig[m] ← Qsig[m] ∪ {VK[i]}
21: return Sig(SK[i],m)
22: end function
23: function Ocor(i)
24: Qcor ← Qcor ∪ {VK[i]}
25: return SK[i]
26: end function

It is straightforward to see that if Π is a secure ATMS,

then the tuple (PGen,Gen,Sig,Ver) is a EUF-CMA-secure

signature scheme.

Looking ahead, note that since the AKey algorithm is only

invoked with the public keys of the participants, it can be

invoked by anyone, not just the parties who hold the respective

secret keys, as long as the public portion of their keys is

published. Furthermore, notice that the above games allow the

adversary to generate more public/private key pairs of their

own and combine them at will.

Having defined the ATMS primitive, we will now describe

a sidechain construction that uses it. Concrete instantiations

of the ATMS primitive are presented in Section V.



B. A Concrete Asset A

We now present an example of a simple fungible asset with

fixed supply, which we denote A, and describe its validity

language VA. This will be the asset (and validity language)

considered in our construction and proof. While VA is simple

and natural, it allows us to exhibit the main features of our

security treatment and illustrate how it can be applied to more

complex languages such as those capable of capturing smart

contracts; we omit such extensions in this version. Note that

our language is account-based, but a UTXO-based validity

language can be considered in a similar manner.

1) Instantiating VA: The validity language VA for the

asset A considers two ledgers: the mainchain ledger L0 �
MC and the sidechain ledger L1 � SC. For this as-

set, every transaction tx ∈ TA has the form tx =
(txid, lid, (send, sAcc), (rec, rAcc), v, σ), where:

• txid is a transaction identifier that prevents replay attacks.

We assume that txid contains sufficient information to

identify lid by inspection and that this is part of syntactic

transaction validation.

• lid ∈ {0, 1} is the ledger index where the transaction

belongs.

• send ∈ {0, 1} is the index of the sender ledger Lsend

and sAcc is an account on this ledger, this is the sender

account. For simplicity, we assume that sAcc is the public

key of the account.

• rec ∈ {0, 1} is the index of the recipient ledger Lrec and

rAcc is an account (again represented by a public key)

on this ledger, this is the recipient account. We allow

either Lsend = Lrec, which denotes a local transaction,

or Lsend 	= Lrec, which denotes a remote transaction (i.e.,

a cross-ledger transfer).

• v is the amount to be transferred.

• σ is the signature of the sender, i.e. made with the private

key corresponding to the public key sAcc on the plaintext

(txid, (send, sAcc), (rec, rAcc), v).

The correctness of lid is enforced by the ledgers, i.e., for both

i ∈ {0, 1} the set TA,Li only contains transactions with lid =
i. Note that although we sometimes notationally distinguish

between an account and the public key that is associated with

it, for simplicity we will assume that these are either identical

or can always be derived from one another (this assumption

is not essential for our construction).

The membership-deciding algorithm for VA (detailed as

Algorithm 7 in Appendix B) processes the sequence of trans-

actions (tx1, tx2, . . . , txm) given to it as input in their order.

Assuming transactions are syntactically valid, the function

verifies for each transaction txi the freshness of txid, validity

of the signature, and availability of sufficient funds on the

sending account. For an intra-ledger transaction (i.e., one that

has send = rec), these are all the performed checks.

More interestingly, VA also allows for cross-ledger trans-

fers. Such transfers are expressed by a pair of transactions in

which send 	= rec. The first transaction appears in lid = send,

while the second transaction appears in lid = rec. The two

transactions are identical except for this change in lid (this is

the only exception to the txid-freshness requirement). Every

receiving transaction has to be preceded by a matching sending

transaction. Cross-chain transactions have to, similarly to intra-

ledger transactions, conform to laws of balance conservation.

Note that VA does not require that every “sending” cross-

ledger transaction on the sender ledger is matched by a “re-

ceiving” transaction on the receiving ledger. Hence, if the asset

A is sent from ledger Lsend but has not yet arrived on Lrec then

validity for this asset is not violated. All the validity language

ensures is that appending the sidechain receive transaction to

the rec will eventually be a valid way to extend the receiving

ledger, as long as the sidechain send transaction has been

included in send.
2) Instantiating effectLi→Lj

: For the simple asset A out-

lined above, every cross-ledger transfer is a “sending” trans-

action tx with Llid = Lsend 	= Lrec appearing in Lsend, and

its effect transaction is a “receiving” transaction tx′ with

Llid = Lrec 	= Lsend in Lrec that is otherwise identical

(except for the different lid′ = 1 − lid). Hence, we define

effectLsend→Lrec(tx) = tx′ exactly for all these transactions and

no other.
3) Instantiating merge(·): It is easy to construct a canonical

function merge(·) once we see its inputs not only as ledger

states (i.e., sequences of transactions) but we also exploit

the additional structure of the blockchains carrying those

ledgers. The canonical merge of the set of ledger states L
is the lexicographically minimum topologically sound merge,

in which transactions of ledger Li are compared favourably to

transactions in Lj if i < j. However, note that the construction

we provide below will work for any topologically sound merge

function.

One can easily observe the following statement.

Proposition 1. The validity language VA is correct (according
to Definition 7) with respect to the merge function defined
above.

C. The Sidechain Construction

We now describe the procedures for running a sidechain

in the configuration outlined at the beginning of this section:

with independent staking on MC and merged staking on SC;

direct observation of MC and cross-chain certification of SC.

We describe the sidechain’s creation, maintenance, and the

way assets can be transferred to it and back. The protocol we

describe below is quite complex, we hence choose to describe

different parts of the protocol in differing levels of detail.

This level is always chosen with the intention to allow the

reader to easily fill in the details. A graphical depiction of our

construction that can serve as a reference is given in Figure 2.

1) Notation: Where applicable, we denote the analogues

of the mainchain objects on the sidechain with an additional

overline. In our pseudocode, we use the statement “post tx
to L” to refer to the action of broadcasting the transaction

tx to the maintainers of the ledger L so that they include it
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Fig. 2: Our sidechain construction. Blocks are shown as rect-

angles. Adjacent blocks connect with straight lines. Squiggly

lines indicate some blocks are omitted. MC is at the top, SC
at the bottom. Epochs are separated by dashed lines. ejadopt

is the epoch of first signalling; ejstart
is the activation epoch.

Blocks of interest: 1. The first block signalling SC awareness;

2. The SC genesis block; 3. A txsend transaction for a deposit;

4. A txrec transaction for a deposit; 5. A txsend transaction for

withdrawal; 6. A sc cert transaction signalling trust transition

within SC and certifying pending withdrawals; 7. A txrec
transaction for withdrawal, certified in a sc cert transaction

e.g. in block 6.

in the ledger eventually as prescribed by the protocol. Unless

indicated otherwise, we also denote by MC (resp. SC) the

current ledger state of the ledger MC (resp. SC) as viewed

by the party executing the protocol. Similarly, we denote by

CMC (resp. CSC) the currently held chain corresponding to

the ledger MC (resp. SC). Hence, for example MC always

represents the state stored in the stable part of the chain CMC.

2) Helper Transactions and Data: The construction uses

a set of helper transactions which can be included in both

blockchains, but do not get reported in the respective ledgers.

These helper transactions store the appropriate metadata which

is implementation-specific and allow the pegging functionality

to be maintained. The transaction types sidechain support,
sidechain certificate, sidechain success and sidechain failure,

whose nature will be detailed later, are of this kind. Moreover,

our concrete implementation of pegged ledgers extends certain

transactions with additional information (such as Merkle-tree

inclusion proofs) that are, for convenience, understood to

be stripped off these transactions when the blockchain is

interpreted as a ledger.

3) Initialisation: The creation of a new sidechain SC starts

by any of the stakeholders of the mainchain adopting the code

that implements the sidechain. This action does not require

the stakeholders to put stake on the sidechain but merely

to run the code to support it (e.g. by installing a pluggable

module into their client software). In the following this is

referred to as “adopting the sidechain” and captured by the

predicate SidechainAdoption. The adoption is announced at

the mainchain by a special transaction detailed below. Each

sidechain is identified by a unique identifier idSC.

Let jadopt denote the epoch on MC when the first adoption

transaction has appeared; the sidechain SC – if its activation

succeeds as discussed below – will start at the beginning of

some later epoch jstart and will have its slots and epochs

synchronized with MC. The software module implementing

the sidechain comes with a set of deterministic rules describing

the requirements for the successful activation of the sidechain,

as well as for determining jstart. These rules are sidechain-

specific and are captured in a predicate ActivationSuccess and

a function ActivationEpoch, respectively. One typical such

example is the following: the sidechain starts at the beginning

of MC-epoch jstart for the smallest jstart that satisfies: (i)

jstart − jadopt > c1; (ii) at least c2-fraction of stake on MC
is controlled by stakeholders that have adopted SC; for some

constants c1,c2. Additionally, if such a successful activation

does not occur until a failure condition captured by a predicate

ActivationFailure is met (e.g. until a predetermined period of

c3 > c1 epochs has passed), the sidechain initialization is

aborted.

The activation process then follows the steps outlined

below, the detailed description is given in Algorithm 2 in

Appendix B. First, every stakeholder Ui of MC (holding a

key pair (vk, sk)) that supports the sidechain posts a special

transaction (sidechain support, idSC, vk, vk
′), signed by sk

into the mainchain. Here vk′ is a public key from an ATMS

key pair freshly generated by Ui; its role is explained in

Section IV-C8 below.

If the sidechain activation succeeds, then during the first

slot of epoch jstart the stakeholders of MC that support

SC construct the genesis block G = (idSC, SDjstart , η̄jstart �
H(idSC, ηjstart),P, avkjstart) for SC. ηjstart is the randomness

for leader election on MC in epoch jstart (derived on MC in

epoch jstart − 1). It is reused to compute the initial sidechain

randomness η̄jstart as well, further η̄j′ for j′ > jstart are

determined independently on SC using the Ouroboros coin-

tossing protocol.5 Furthermore, P and avkjstart are public

parameters and an aggregated public key of an ATMS scheme;

their creation and role is discussed in Section IV-C8 below.

Note that G is defined mostly for notational compatibility, as

SDjstart is empty at this point anyway. G can be constructed as

soon as ηjstart is known and stable.

The stakeholders that adopted SC post into MC a trans-

action sidechain success(idSC) to signify that SC has been

initialized. If the sidechain creation expires, then, after the

first block of the next epoch after expiration occurs, the

stakeholders of MC that supported SC post the transac-

tion sidechain failure(idSC) to MC. We assume that both

predicates ActivationSuccess and ActivationFailure can be

evaluated based on the state of MC only, and hence spurious

success/failure transactions will be considered invalid.

4) Maintenance: Once the sidechain is created, both the

mainchain and the sidechain need to be maintained by their

respective set of stakeholders (detailed below) running their

respective instance of the Ouroboros protocol.

In the case of the mainchain, the maintenance procedure

is given below, with its exact code shown in Appendix B

5This can be interpreted as using MC to implement the setup functionality
needed to bootstrap SC.



as Algorithm 3. This algorithm is run by all stakeholders

controlling stake that is recorded on the mainchain. Each

stakeholder, on every new slot, collects all the candidate MC-

chains from the network (modelled via the Diffuse function-

ality) and filters them for both consensus-level validity (using

MC.ValidateConsensusLevel) and transaction validity (using

the VERIFIERMC predicate given in Algorithm 8). Out of the

remaining valid chains, he chooses his new state CMC via

PickWinningChain. Then the stakeholder evaluates whether

he is an eligible leader for this slot, basing its selection on

the stake distribution SDj and randomness ηj , which are

determined once per epoch in accordance with the Ouroboros

protocol. If the stakeholder finds out he is a slot leader, he

creates a new block B by including all transactions currently

valid with respect to CMC (as per the predicate VERIFYTXMC

given also in Algorithm 8), appends it to the chain CMC and

diffuses the result6 for other parties to adopt.

The maintenance procedure for SC is similar, hence we

only describe here how it differs from Algorithm 3. Most

importantly, it is executed by all stakeholders who have

adopted SC, irrespectively of whether they own any stake on

SC. Recall that the slots and epochs of the SC-instance of

Ouroboros are aligned with the slots and epochs of MC.

The first difference is that all ocurrences of MC and CMC

are naturally replaced by SC and CSC, respectively. This also

means that the validity of received chains (resp. transactions),

determined on line 13 (resp. 21), is decided based on predicate

VERIFIERSC(·,CMC) (resp. VERIFYTXSC(·)) instead of the

predicate VERIFIERMC(·) (resp. VERIFYTXMC(·)). Addition-

ally, note that VERIFYTXSC must be called with a sequence

of transactions containing both the transactions in SC as

well as the transactions in MC interspersed and timestamped,

similarly to the way done in Line 2 of Algorithm 10. This is

straightforward to implement, as the sidechain maintainers also

directly observe the mainchain. The predicates VERIFYTXSC

and VERIFIERSC are given in Algorithm 10 in Appendix B.

Second, instead of the stake distribution SDj determined on

line 6, a different distribution SD
∗
j is determined to be used

for slot leader selection in the j-th epoch of the sidechain. The

distribution SD
∗

contains all stake belonging to stakeholders

that have adopted SC, irrespectively of whether this stake is

located on MC or SC (we call such stake SC-aware). It can

be obtained by combining the distribution SD as recorded in

SC with the distribution of SC-aware stake on MC (which

is known to SC-maintainers via direct observation of MC).

Note that the distribution used for epoch j reflects the stake

distribution of SC-aware stake in the past, namely by slot 4k
of epoch j−1, just as in MC. Naturally, this also implies that

the fourth parameter for the SlotLeader predicate on line 17

is SD
∗
j instead of SDj .

Finally, the block construction procedure on line 23 is

adjusted so that in the last 2k slots of each epoch, the

created blocks on the sidechain also contain an additional

6 As in [11], [18], we simplify our presentation by diffusing the complete
chains, although a practical implementation would only diffuse the block B.

ATMS signature of a so-called sidechain certificate (how this

certificate is constructed and used will be described below).

Hence, whenever sl mod R > 10k, line 23 is replaced

by B ← (prev, 	txvalid, σ, σsc certj+1) where σsc certj+1 =
Sigsk(sc certj+1) and j is the current epoch index.

5) Depositing to SC: Once SC is initialized, cross-chain

transfers to it can be made from MC. A cross-chain transfer

operation in this case consists of two transactions txsend and

txrec that both have send = MC, rec = SC, and all other

fields are also identical, except that each txi for i ∈ {send, rec}
contains lid = i. The sending transaction txsend is meant to

be included in MC, while the receiving transaction txrec is

meant to be included in SC.

Whenever a stakeholder on MC that has adopted SC wants

to transfer funds to SC, she diffuses txsend with the correct

receiving account on SC and the desired amount. Honest slot

leaders in MC include these transactions into their blocks

just like any intra-chain transfer transactions. Maintainers of

MC keep account of a variable poolSC, initially set to zero.

Whenever a txsend is included into MC, they increase poolSC
by the amount of this transaction.

When txsend becomes stable in MC (i.e., appears in MC,

this happens at most 2k slots after its inclusion), the stake-

holder creates and diffuses the corresponding txrec which

credits the respective amount of coins to rAcc in SC, to

be included into SC. In practice, this is akin to a coinbase

transaction, as the money was not transferred from an existing

SC account.

Note that depositing from MC to SC is relatively fast;

it merely requires a reliable inclusion of txsend into MC and

consequently of txrec into SC, as guaranteed by the liveness of

the underlying Ouroboros instances. The depositing algorithm

code is shown in Algorithm 4 in Appendix B.

6) Withdrawing to MC: The withdrawal operation is more

cumbersome than the depositing operation since not all nodes

of MC have adopted (i.e., are aware of and follow) the

sidechain SC. As transactions, the withdrawals have the same

structure as deposits, consisting of txsend and txrec, with the

only difference that now they both have send = SC and

rec = MC. The sending transaction will be handled in

the same way as in the case of deposits, but the receiving

transaction requires a different certificate-based treatment, as

detailed below.

Whenever a stakeholder in SC wishes to withdraw coins

from SC to MC, she creates and diffuses the respective

transaction txsend with the correct transfer details as before.

If txsend is included in a block that belongs in one of the

first R − 4k slots of some epoch then let jsend denote the

index of this epoch, otherwise let jsend denote the index of the

following epoch. The stakeholder then waits for the end of the

epoch ejsend to pass and ejsend+1 to begin.

At the beginning of ejsend+1, a special transaction called

sidechain certificate sc certjsend+1 is generated by the main-

tainers of SC. It contains: (i) a Merkle-tree commitment to

all withdrawal transactions txsend that were included into SC
during last 4k slots of epoch jsend − 1 and the first R − 4k



slots of epoch jsend (as these all are already stable by slot

R − 2k of epoch jsend); (ii) other information allowing the

maintainers of MC to inductively validate the certificate in

every epoch. The construction of sc cert is detailed below,

for now assume that the transaction provides a proof that the

included information about withdrawal transactions is correct.

The transaction sc cert is broadcast into the MC network to

be included into MC at the beginning of ejsend+1 by the first

honest slot leader.

The stakeholder who wishes to withdraw their money into

MC now creates and diffuses the transaction txrec to be

included in MC. This transaction is only included into MC if

it is considered valid, which means: (1) it is properly signed;

(2) it contains a Merkle inclusion proof confirming its presence

in some already included sidechain certificate; (3) its amount

is less or equal to the current value of poolSC. If included,

MC-maintainers decrease the value of poolSC by the amount

of this transaction. The code of the withdrawal algorithm is

illustrated in Algorithm 5 in Appendix B.

7) The certificate transaction: We now describe the con-

struction of the sc cert transaction, also called the sidechain
certificate, formally described in Algorithm 6 in Appendix B.

The role of the certificate produced by the end of epoch

j − 1 to be included in MC at the beginning of epoch j
(denoted sc certj) is to attest all the withdrawals that had

their sending transactions included into SC in either the last

4k slots of ej−2 or the first R−4k slots of ej−1. To maintain

a chain of trust for the MC maintainers that cannot verify

these transactions by observing SC, we make use of ad-hoc

threshold multisignatures introduced in Section IV-A. Namely,

the sc certj transaction also contains an aggregate key avkj

of an ATMS, and is signed by the previous aggregate key

avkj−1 included in sc certj−1.

sc certj is generated by SC-maintainers and contains:

• The epoch index j.

• The pending transactions from SC to MC. Let 	tx be

the sequence of all transactions which are included in

SC during either the last 4k slots of ej−2 or the first

R−4k slots of ej . All transactions in 	tx that have SC =
send 	= rec = MC are picked up and combined into

a list pendingj (sorted in the same order as in SC). Let〈
pendingj

〉
denote a Merkle-tree commitment to this list.

• The new ATMS key avkj . The key is created from the

public keys of the slot leaders of the last 2k slots of the

epoch j, using threshold k+1. Hence, it allows to verify

whether a particular signature comes from k + 1 out of

these 2k keys.

• Signature valid with respect to avkj−1.
The full sc certj is therefore a tuple

(
j, 〈pendingj〉, avkj , σj

)
,

where σj is an ATMS signature on the preceding elements that

verifies using avkj−1.

The certificate sc certj+1 is constructed as follows: Both

the stake distribution SD
∗
j+1 and the SC-randomness η̄j+1

(and hence also the slot leader schedule for SC in epoch j+1)

are determined by the states of the blockchains MC and SC

by the end of slot 10k of epoch j. Therefore, during the last

2k slots of epoch j, the 2k elected slot leaders for these slots

can already include a (local) signature on (their proposal of)

sc certj+1 into the blocks they create. Given the deterministic

construction of sc certj+1, all valid blocks ending up in the

part of SC-chain belonging to the last 2k slots of epoch j will

contain a local signature on the same sc certj+1, and by the

chain growth property of the underlying blockchain, there will

be at least k+1 of them. Therefore, any party observing SC
can now combine these signatures into an ATMS that can be

later verified using the ATMS key avkj , it can hence create the

complete certificate sc certj+1 and serve it to the maintainers

of MC for inclusion.

8) Transitioning trust: As already outlined above, our

construction uses ATMS to maintain the authenticity of the

sidechain certificates from epoch to epoch. We now describe

this inductive process in greater detail.

Initially, during the setup of the sidechain, P ←
PGen(1κ) is ran. Stakeholders generate their keys by invoking

(ski, vki) ← Gen(P). In case Gen(·) is a probabilistic algo-

rithm, it is run in a derandomized fashion with its coins fixed

to the output of a PRNG that is seeded by H(ats init, ηjstart)
where “ats init” is a fixed label and H is a hash function.

This ensures that P will be uniquely determined and will still

be unpredictable. We note that this process is only suitable

for ATMS that employ public-coin parameters; our ATMS

constructions in Section V are only of this type.

For the induction base, P is published as part of the

Genesis block G. Each time an MC stakeholder Ui posts the

sidechain support message to MC, he also includes an ATMS

key vki. Subsequently, when the SC is initialised, the stake

distribution SD
∗
jstart is known to the MC participants. Hence,

based on SD
∗
jstart and η̄jstart , these can determine the last 2k

slot leaders of epoch jstart in SC, we will refer to them as the

jstart-th trust committee. (In general, the j-th trust committee
for j ≥ jstart will be the set of last 2k slot leaders in epoch

j.) SC-maintainers (that also follow MC) can also determine

the jstart-th trust committee and therefore create avkjstart from

their public keys and insert it into the genesis block G of SC.

They can also serve it as a special transaction to the MC-

maintainers to include into the mainchain. The correctness

of avkjstart can be readily verified by anyone following the

mainchain using the procedure ACheck of the used ATMS.

For the induction step, consider an epoch j > jstart and

assume that there exists an ATMS key of the previous epoch

avkj−1, known to the mainchain maintainers. Every honest

SC slot leader among the last 2k slot leaders of SC epoch

j − 1 will produce a local signature sji on the message m =
(j, 〈pendingj〉, avkj) using their private key skj−1

i by running

Sig(skj−1
i ,m), and include this signature into the block they

create. The rest of the SC maintainers will verify that the

epoch index, avkj and 〈pendingj〉 are correct (by ensuring

ACheck(VKj , avkj) is true for VK denoting the public keys

of the last 2k slot leaders on SC for epoch j, and by recom-

puting the Merkle tree commitment 〈pendingj〉) and that sji



is valid by running Ver(m, vkj−1
i , sji ), otherwise the block is

considered invalid. Thanks to the chain growth property of the

underlying Ouroboros protocol, after the last 2k slots of epoch

j−1 the honest sidechain maintainers will all observe at least

k+1 signatures among the {sji : i ∈ [2k]} desired ones. They

then combine all of these local signatures into an aggregated

ATMS signature σj ← ASig(m, {(sji , vk
j−1
i )}, keysj). This

combined signature is then diffused as part of sc certj on

the mainchain network. The mainchain maintainers verify that

it has been signed by the sidechain maintainers by checking

that AVer(m, avkj−1, σj) evaluates to true and include it in

a mainchain block. This effectively hands over control to the

new committee.

V. CONSTRUCTING AD-HOC THRESHOLD

MULTISIGNATURES

We now present an instantiation of the ATMS primitive

based on the multisignature scheme ΠMGS from [6]. Note that

other constructions are possible: we defer a discussion of a

plain signature-based ATMS, as well as an ATMS based on

proofs of knowledge, to the full version of this paper.

We make use of a homomorphic property of ΠMGS: any

d individual signatures σ1, . . . , σd created using secret keys

belonging to (not necessarily unique) public keys vk1, . . . , vkd
can be combined into a multisignature σ =

∏d
i=1 σi that

can then be verified using an aggregated public key avk =∏d
i=1 vki.
Our multisignature-based t-ATMS construction works as

follows: the procedures PGen, Gen, Sig and Ver work exactly

as in ΠMGS. Given a set S, denote by 〈S〉 a Merkle-tree

commitment to the set S created in some arbitrary, fixed,

deterministic way. Procedure AKey, given a sequence of public

keys VK = {vki}ni=1 returns avk = (
∏n

i=1 vki, 〈VK〉). Since

AKey is deterministic, ACheck(VK, avk) simply recomputes

it to verify avk. ASig takes the message m, d pairs of

signatures with their respective public keys {σi, vki}di=1 and

n − d additional public keys {v̂ki}n−d
i=1 and produces an

aggregate signature

σ =

(
d∏

i=1

σi, {v̂ki}n−d
i=1 , {πv̂ki

}n−d
i=1

)
(1)

where π
v̂ki

denotes the (unique) inclusion proof of v̂ki in

the Merkle commitment
〈
{vki}di=1 ∪ {v̂ki}n−d

i=1

〉
. Finally, the

procedure AVer takes a message m, an aggregate key avk,

and an aggregate signature σ parsed as in (1), and does the

following: (a) verifies that each of the public keys v̂ki indeed

belongs to a different leaf in the commitment 〈VK〉 in avk
using membership proofs π

v̂ki
; (b) computes avk′ by dividing

the first part of avk by
∏n−d

i=1 v̂ki; (c) returns true if and only

if d ≥ t and the first part of σ verifies as a ΠMGS-signature

under avk′.
Note that the scheme ΠMGS requires vki to be accompanied

by a (non-interactive) proof-of-possession (POP) [26] of the

respective secret key. This POP can be appended to the public

key and verified when the key is communicated in the protocol.

For conciseness, we omit these proofs-of-knowledge from the

description (but we include them in the size calculation below).

In the optimistic case where each of the 2k committee

members create their local signatures, both the aggregate key

avk and the aggregate signature σ are linear in the security

parameter, which is optimal. If r < k of the keys do not
provide their local signatures, the construction falls back to

being quadratic in the worst case if r = k − 1.

Concrete signature sizes in this scheme for practical pa-

rameters could be as follows. We set k = 2160 (as is done

in the Cardano implementations of [18]) and for the signature

of [6] we have in bits: |vki| = 272, |σi| = 528 (N. Di Prima,

V. Hanquez, personal communication, 16 Mar 2018), with

|vki+POP | = |vki|+|σi| = 800 bits. Assuming 256-bit hash

function is used for the Merkle tree construction, the size of

the data which needs to be included in MC in the optimistic

case during an epoch transition is |avk|+ |σ|+ |〈pending〉| =
|vki + POP | + 2|H(·)| + |σi| = 800 + 512 + 528 = 1840
bits per epoch. In a case where 10% of participants fail

to sign, the size will be |avk| + |σ| = |vki + POP | +
2|H(·)| + |σi| + 0.1 · 2 · k(|vki + POP | + log(k)|H(·)) =
800+512+528+432 · (500+12 · 256) = 1544944, or about

190 KB per epoch (which is approximately 5 days).

VI. SECURITY

Our main theorem below states that under natural assump-

tions, the construction from Section IV implements a secure

2-way peg according to Definition 8.

Let Ahm(L) denote the honest-majority assumption for an

Ouroboros ledger L. Namely, Ahm(L) postulates that in each

slot t, the majority of stake in the stake distribution used to

sample slot leader for slot t in L is controlled by honest parties

(note that the distribution in question is SD and SD
∗

for MC
and SC, respectively). The assumption AMC we consider for

MC is precisely Ahm(MC), while the assumption ASC for

SC is Ahm(MC)∧Ahm(SC). The reason that ASC ⇒ AMC

is that SC uses merged staking and hence cannot provide any

security guarantees if the stake records on MC get corrupted.

It is worth noting that it is possible to program SC to wean

off MC and switch to independent staking; in such case the

assumption for SC will transition to Ahm(SC) (now with

respect to SD) after the weaning slot and the two chains will

become sidechains of each other.

Theorem 1. Consider the synchronous setting with 2R-
semiadaptive corruptions defined in Section II-A. The con-
struction of Section IV, using a secure ATMS and a collision
resistant hash function, is pegging secure with liveness param-
eter u = 2k with respect to assumptions AMC and ASC, and
merge, effect and VA defined in Section IV-B.

The proof of Theorem 1 is deferred to the full version of the

paper.
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APPENDIX

A. The Diffuse Functionality

In the model described in Section II-A we employ the “De-

layed Diffuse” functionality of [11], which we now describe in

detail for completeness. The functionality is parameterized by

Δ ∈ N and denoted DDiffuseΔ. It keeps rounds, executing one

round per slot. DDiffuseΔ interacts with the environment Z ,

stakeholders U1, . . . , Un and adversary A, working as follows

for each round: DDiffuseΔ maintains an incoming string for

each party Pi that participates. A party, if activated, can

fetch the contents of its incoming string, hence it behaves

as a mailbox. Furthermore, parties can give an instruction to

the functionality to diffuse a message. Activated parties can

diffuse once per round.

When the adversary A is activated, it can: (a) read all

inboxes and all diffuse requests and deliver messages to the

inboxes in any order; (b) for any message m obtained via a

diffuse request and any party Pi, A may move m into a special

string delayedi instead of the inbox of Pi. A can decide this

individually for each message and each party; (c) for any party

Pi, A can move any message from the string delayedi to the

inbox of Pi.

At the end of each round, the functionality ensures that

every message that was either (a) diffused in this round and

not put to the string delayedi or (b) removed from the string

delayedi in this round is delivered to the inbox of party Pi. If a

message currently present in delayedi was originally diffused

Δ slots ago, the functionality removes it from delayedi and

appends it to the inbox of party Pi.

Upon receiving (Create, U, C) from the environment, the

functionality spawns a new stakeholder with chain C as its

initial local chain (as in [11], [18]).



B. Omitted Algorithms

Here we spell out the procedures for initializing the

sidechain (Alg. 2), maintaining the mainchain (Alg. 3), de-

positing funds to SC (Alg. 4) and withdrawing them back

to MC (Alg. 5), as well as creating a sidechain certificate

(Alg. 6). Additionally, we also describe the membership-

deciding procedure for the validity language VA in Alg. 7,

and the auxiliary verifier algorithms for the mainchain and the

sidechain in Algorithms 8 and 10, respectively.

Algorithm 2 Sidechain initialisation procedures.

The algorithm is run by every stakeholder U that adopted the

sidechain. We denote by (vk, sk) its public and private keys.

1: upon SidechainAdoption(idSC) do
2: sidechain state[idSC] ← initializing
3: (vk′, sk′) ← Gen(P)
4: σ ← Sigsk(sidechain support, idSC, vk, vk

′)
5: post (sidechain support, idSC, vk, vk

′, σ) to MC
6: end upon
7: upon MC.NewEpoch() do
8: j ← MC.EpochIndex()
9: if sidechain state[idSC] = initializing then

10: if ActivationFailure() then
11: sidechain state[idSC] ← failed
12: post sidechain failure(idSC) to MC
13: else if ActivationSuccess() then
14: sidechain state[idSC] ← initialized
15: jstart ← ActivationEpoch()
16: Post sidechain success(idSC) to MC
17: end if
18: end if
19: if sidechain state[idSC] = initialized ∧ j = jstart then
20: η̄jstart ← H(idSC, ηjstart)
21: VKjstart ← 2k last slot leaders of ejstart in SC
22: avkjstart ← AKey(VKjstart)
23: G ←

(
idSC, SDjstart , η̄jstart ,P, avkjstart

)
24: CSC ← (G)
25: end if
26: end upon

C. Adaptation to Other Proof-of-Stake Blockchains

Our construction can be adapted to work with other prov-

ably secure proof-of-stake blockchains discussed in Sec-

tion II-C: Ouroboros Praos [11], Ouroboros Genesis [2], Snow

White [5], and Algorand [24]. Here we assume some famil-

iarity with the considered protocols and refer the interested

reader to the original papers for details.

1) Ouroboros Praos and Ouroboros Genesis: These proto-

cols [2], [11] are strongly related and differ from each other

only in the chain-selection rule they use, which is irrelevant for

our discussion here, hence we consider both of the protocols

simultaneously. Ouroboros Praos was shown secure in the

semi-synchronous model with fully adaptive corruptions (cf.

Section II-A) and this result extends to Ouroboros Genesis.

Algorithm 3 Mainchain maintenance procedures.

The algorithm is run by every stakeholder U with stake on

MC in every epoch j ≥ jstart, sk denotes the secret key of U .

An analogous mainchain-maintaining procedure was running

also before jstart and is omitted.

1: upon MC.NewSlot() do
2: sl ← MC.SlotIndex()
3: 
 First slot of a new epoch
4: if sl mod R = 1 then
5: j ← MC.EpochIndex()
6: SDj ← MC.GetDistr(j)
7: ηj ← MC.GetRandomness(j)
8: end if
9: C ← chains received via Diffuse

10: 
 Consensus-level validation
11: Cvalid ← Filter(C,MC.ValidateConsensusLevel)
12: 
 Transaction-level validation
13: Cvalidtx ← Filter(Cvalid, VERIFIERMC(·))
14: 
 Apply chain selection rule
15: CMC ← MC.PickWinningChain(CMC, Cvalidtx)
16: 
 Decide slot leadership based on SDj and ηj
17: if MC.SlotLeader(U, j, sl, SDj , ηj) then
18: prev ← H(CMC[−1])
19: 	txstate ← transaction sequence in CMC

20: 	tx ← current transactions in mempool

21: 	txvalid ← VERIFYTXMC(	txstate ‖ 	tx)[|	txstate| :]
22: σ ← Sigsk(prev, 	txvalid)
23: B ← (prev, 	txvalid, σ)
24: CMC ← CMC ‖B
25: Diffuse(CMC)
26: end if
27: end upon

Algorithm 4 Depositing from MC to SC.

The algorithm is run by a stakeholder U in control of the

secret key sk corresponding to the account sAcc on MC.

1: function Send(sAcc, rAcc, v)

2: txid
$← {0, 1}k

3: σ ← Sigsk (txid,MC, (MC, sAcc), (SC, rAcc), v)
4: txsend ← (txid,MC, (MC, sAcc), (SC, rAcc), v, σ)
5: post txsend to MC
6: end function
7: function Receive(txid, sAcc, rAcc, v)

8: wait until txsend ∈ MC
9: σ ← Sigsk (txid,SC, (MC, sAcc), (SC, rAcc), v)

10: txrec ← (txid,SC, (MC, sAcc), (SC, rAcc), v, σ)
11: post txrec to SC
12: end function



Algorithm 5 Withdrawing from SC to MC.

The algorithm is run by a stakeholder U in control of the

secret key sk corresponding to the account sAcc on SC.

1: function Send(sAcc, rAcc, v) 
 Send v from sAcc on

SC to rAcc on MC
2: txid

$← {0, 1}k
3: σ ← Sigsk (txid,SC, (SC, sAcc), (MC, rAcc), v)
4: txsend ← (txid,SC, (SC, sAcc), (MC, rAcc), v, σ)
5: post txsend to SC
6: end function
7: function Receive(txid, sAcc, rAcc, v)

8: wait until txsend ∈ CSC

9: j′ ← epoch where CSC contains txsend
10: if (txsend included in slot sl ≤ R− 4 of ej′ ) then
11: jsend ← j′

12: else
13: jsend ← j′ + 1
14: end if
15: wait until sc certjsend+1 ∈ CMC

16: π ← Merkle-tree proof of txsend in sc certjsend+1

17: σ ← Sigsk (txid,MC, (SC, sAcc), (MC, rAcc), v, π)
18: txrec ← (txid,MC, (SC, sAcc), (MC, rAcc), v, π, σ)
19: post txrec to MC
20: end function

Algorithm 6 Constructing sidechain certificate sc cert.

The algorithm is run by every SC-maintainer at the end of

each epoch, j denotes the index of the ending epoch.

1: function ConstructSCCert(j)

2: T ← last 4k slots of ej−1 and first R− 4k slots of ej
3: 	tx ← transactions included in SC during T
4: pendingj+1 ←

{
tx ∈ 	tx : tx.send 	= tx.rec

}
5: VKj+1 ← keys of last 2k SC slot leaders in ej+1

6: avkj+1 ← AKey(VKj+1)
7: m ←

(〈
pendingj+1

〉
, avkj+1

)
8: VKj ← keys of last 2k SC slot leaders for ej

9: σj+1 ← ASig
(
m, {(vki, σi)}di=1 ,VKj

)
10: sc certj+1 ← (

〈
pendingj+1

〉
, avkj+1, σj+1)

11: return sc certj+1

12: end function

Despite sharing the basic structure with Ouroboros, they differ

in several significant points which we now outline.

The slot leaders are elected differently: Namely, each

party for each slot evaluates a verifiable random function

(VRF, [13]) using the secret key associated with their stake,

and providing as inputs to the VRF both the slot index and

the epoch randomness. If the VRF output is below a certain

threshold that depends on the party’s stake, then the party is an

eligible slot leader for that slot, with the same consequences

as in Ouroboros. Each leader then includes into the block it

creates the VRF output and a proof of its validity to certify her

eligibility to act as slot leader. The probability of becoming a

Algorithm 7 The transaction sequence validator (membership-

deciding algorithm for VA).

1: function valid-seq(	tx)

2: BALANCE ← Initial stake distribution; seen ← ∅
3: 
 Traverse transactions in order
4: for tx ∈ 	tx do
5: 
 Destructure tx into its constituents
6: (txid, lid, (send, sAcc), (rec, rAcc), v, σ) ← tx
7: if ¬valid(σ) then
8: return false
9: end if

10: if lid = send then
11: 
 Replay protection
12: if seen[txid] 	= 0 then
13: return false
14: end if
15: 
 Law of conservation
16: if BALANCE[send][sAcc]− v < 0 then
17: return false
18: end if
19: else
20: 
 The case lid = rec 	= send
21: if seen[txid] 	= 1 then
22: return false
23: end if
24: 
 Cross-ledger validity
25: tx′ ← effect−1

L(1−lid)→Llid
(tx)

26: if tx′ has not appeared before then
27: return false
28: end if
29: end if
30: if seen[txid] = 0 then
31: 
 Update sender balance when money departs
32: BALANCE[send][sAcc] −= v
33: end if
34: 
 Update receiver balance when money arrives
35: if (seen[txid] = 0 ∧ send = rec)∨

(seen[txid] = 1 ∧ send 	= rec) then
36: BALANCE[rec][rAcc] += v
37: end if
38: seen[txid]+ = 1
39: end for
40: return true
41: end function

slot leader is roughly proportional to the amount of stake the

party controls, however now it is independent for each slot

and each party, as it is evaluated locally by each stakeholder

for herself. This local nature of the leader election implies

that there will inevitably be some slots with no, or several,

slot leaders. In each epoch j, the stake distribution used in

Praos and Genesis for slot leader election corresponds to the

distribution recorded in the ledger up to the last block of

epoch j−2. Additionally, the epoch randomness ηj for epoch



Algorithm 8 The MC verifier.

1: function VERIFYTXMC(	tx)

2: bal ← initial stake; avk ← initial aggregate key

3: seen ← ∅; pool ← 0; pfs mtrs ← ∅; pfs used ← ∅
4: for tx ∈ 	tx do
5: if type(tx) = sc cert then
6: (m,σ) ← tx
7: if ¬AVer(m, avk, σ) then
8: continue
9: end if

10: (txs root, avk′) ← m
11: avk ← avk′

12: pfs mtrs[txs root] ← true
13: else
14: (txid, lid, (send, sAcc), (rec, rAcc), v, σ) ← tx
15: m ← (txid, lid, (send, sAcc), (rec, rAcc), v)
16: if ¬Ver(m, sAcc, σ) ∨ seen[txid] 	= 0 then
17: continue
18: end if
19: if lid = send then
20: if bal[sAcc]− v < 0 then
21: continue
22: end if
23: bal[sAcc] −= v
24: else if send 	= rec then
25: π ← tx.π
26: (mtr, inclusion pf) ← π
27: if π ∈ pfs used ∨mtr 	∈ pfs mtrs∨

¬MTR-VER(mtr, inclusion pf) then
28: continue
29: end if
30: end if
31: if lid = rec then
32: bal[rAcc] += v
33: end if
34: if send 	= rec then
35: if lid = send then
36: pool −= v
37: else
38: pool += v
39: end if
40: end if
41: end if
42: seen ← seen ‖ tx
43: end for
44: return seen
45: end function
46: function VERIFIERMC(Cmc)

47: 	tx ← ∅
48: for B ∈ Cmc do
49: for tx ∈ B do
50: 	tx ← 	tx ‖ tx
51: end for
52: end for
53: return 	tx 	= VERIFYTXMC(	tx)
54: end function

Algorithm 9 The SC transaction annotation.

1: function ANNOTATETXSC(Csc,Cmc)

2: 	tx ← ∅
3: for each time slot t do
4: 	tx

′ ← ε
5: if Csc has a block generated at slot t then
6: B ← the block in Csc generated at t
7: for tx ∈ B do
8: 	tx

′ ← 	tx
′ ‖ tx

9: end for
10: end if
11: if Cmc has a block generated at slot t then
12: B ← the block in Cmc generated at t
13: for tx ∈ B do
14: 	tx

′ ← 	tx
′ ‖ tx

15: end for
16: end if
17: for tx ∈ 	tx

′ do
18: 
 Mark the time of each tx in 	tx

′

19: tx.t ← t
20: end for
21: 	tx ← 	tx ‖ 	tx

′

22: end for
23: return 	tx
24: end function

j is derived as a hash of additional VRF-values included

into blocks from the first two thirds of epoch j − 1 for this

purpose by the respective slot leaders. Finally, the protocols

use key-evolving signatures for block signing, and in each slot

the honest parties are mandated to update their private key,

contributing to their resilience to adaptive corruptions.

Ouroboros Praos was shown [11] to achieve persistence and

liveness under weaker assumptions than Ouroboros, namely:

(1) Δ-semi-synchronous communication (where Δ affects

the security bounds but is unknown to the protocol); (2)

majority of the stake is always controlled by honest parties. In

particular, Ouroboros Praos is secure in face of fully adaptive

corruptions without any corruption delay. Ouroboros Genesis

provides the same guarantees as Praos, as well as several other

features that will not be relevant for our present discusion.

Construction of Pegged Ledgers. The main difference com-

pared to our treatment of Ouroboros would be in the con-

struction of the sidechain certificate (cf. Section IV-C7). The

need for a modification is caused by the private, local leader

selection using VRFs in these protocols, which makes it

impossible to identify the set of slot leaders for the suffix of an

epoch at the beginning of this epoch, as done for Ouroboros.

The sidechain certificate included in MC at the beginning

of epoch j would hence contain the following, for parameters

Q and T specified below:

1) the epoch index;

2) a Merkle commitment to the list of withdrawals as in the

case of Ouroboros;



Algorithm 10 The SC verifier and its respective transaction

verifier.

1: function VERIFIERSC(Csc,Cmc)

2: 	tx ← ANNOTATETXSC(Csc,Cmc)
3: return 	tx 	= VERIFYTXSC(	tx)
4: end function
5: function VERIFYTXSC(	tx)

6: bal[MC] ← Initial MC stake

7: bal[SC] ← Initial SC stake

8: mc outgoing tx ← ∅; seen ← ∅
9: for tx ∈ 	tx do

10: (txid, lid, (send, sAcc), (rec, rAcc), v, σ, t) ← tx
11: m ← (txid, lid, (send, sAcc), (rec, rAcc), v)
12: if ¬Ver(sAcc,m, σ) ∨ seen[txid] 	= 0 then
13: continue
14: end if
15: if lid = send then
16: if bal[send][sAcc]− v < 0 then
17: continue
18: end if
19: if lid = MC ∧ send 	= rec then
20: mc outgoing tx[txid] ← t+ 2k
21: end if
22: end if
23: if lid = rec then
24: if send 	= rec then
25: 
 Effect pre-image tx immature
26: if t < mc outgoing tx[txid] then
27: continue
28: end if
29: end if
30: bal[rec][rAcc] += v
31: end if
32: if lid = send then
33: bal[send][sAcc] −= v
34: end if
35: seen ← seen ‖ tx
36: end for
37: return seen
38: end function

3) a Merkle commitment to the SC stake distribution SDj ;

4) a list of Q public keys;

5) Q inclusion proofs (with respect to SDj−1 contained in

the previous certificate) and Q VRF-proofs certifying that

these Q keys belong to slot leaders of Q out of the last

T slots in epoch j − 1;

6) Q signatures from the above Q public keys on the above;

these can be replaced by a single aggregate signature to

save space on MC.

The parameters Q and T have to be chosen in such a

way that with overwhelming probability, there will be a chain

growth of at least Q blocks during the last T slots of epoch

j−1, but the adversary controls Q slots in this period only with

negligible probability (and hence at least one of the signatures

will have to come from an honest slot leader). The existence

of such constants for T = Θ(k) was shown in [2].
While the above sidechain certificate is larger (and hence

takes more space on MC) than the one we propose for

Ouroboros, a switch to Ouroboros Praos or Genesis would

also bring several advantages. First off, both constructions

would give us security in the semi-synchronous model with

fully adaptive corruptions (as shown in [2], [11]), and the use

of Ouroboros Genesis would allow newly joining players to

bootstrap from the mainchain genesis block only—without the

need for a trusted checkpoint—as discussed extensively in [2].
2) Snow White: The high-level structure of Snow White

execution is similar to the protocols we have already discussed:

it contains epochs, committees that are sampled for each epoch

based on the stake distribution recorded in the blockchain prior

to that epoch, and randomness used for this sampling produced

by hashing special nonce values included in previous blocks.

Hence, our construction can be adapted to work with Snow

White-based blockchains in a straightforward manner.
3) Algorand: Algorand does not aim for the so-called

eventual consensus. Instead it runs a full Byzantine Agreement

protocol for each block before moving to the next block,

hence blocks are immediately finalized. Consider a setting with

MC and SC both running Algorand. The main difficulty to

address when constructing pegged ledgers is the continuous

authentication of the sidechain certificate constructed by SC-

maintainers for MC (other aspects, such as deposits from MC
to SC work analogously to what we described above). As

Algorand does not have epochs, and creating and processing

a sidechain certificate for each block is overly demanding, a

natural choice is to introduce a parameter R and execute this

process only once every R blocks. Namely, every R blocks, the

SC-maintainers produce a certificate that the MC-maintainers

insert into the mainchain. This certificate most importantly

contains:

1) a Merkle commitment to the list of withdrawals in the

most recent R-block period;

2) a Merkle commitment to the full, most recent stake

distribution SDj on SC;

3) a sufficient number of signatures from a separate commit-

tee certifying the above information, together with proofs

justifying the membership of the signature’s creators in

the committee.

This additional committee is sampled from SDj−1 (the stake

distribution committed to in the previous sidechain certificate)

via Algorand’s private sortition mechanism such that the ex-

pected size of the committee is large enough to ensure honest

supermajority (required for Algorand’s security) translates into

a strong honest majority within the committee. Note that

the sortition mechanism also allows for a succinct proof of

membership in the committee. The members of the committee

then insert their individual signatures (signing the first two

items in the certificate above) into the SC blockchain during

the period of R blocks preceding the construction of the

certificate. All the remaining mechanics of the pegged ledgers

are a direct analogy of our construction above.
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